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The linear kinetic approach to calculate the ion drag force in a collisional plasma is generalized. The model
collision integralsfor ion-neutral collisionsd is discussed and employed to calculate the plasma response for
arbitrary velocity of the plasma flow and arbitrary frequency of the collisions. The derived plasma response is
used to calculate the self-consistent force on the test charged particle. The obtained results are compared to
those of the traditional pair collision approach, and the importance of the self-consistent kinetic consideration
is highlighted. In conclusion, the applicability of the proposed approach is discussed.

DOI: 10.1103/PhysRevE.71.016405 PACS numberssd: 52.27.Lw, 52.20.Hv

I. INTRODUCTION

The ion drag force—the momentum transfer from flowing
ions to charged microparticles embedded into a plasma—is
an inevitable and exceptionally important factor in dusty
scomplexd plasmas. Ion flows are usually induced due to
“global” large-scale electric fields always existing in plasmas
se.g., ambipolar or sheath fieldsd. Knowledge of the ion drag
force as a function of the plasma parametersswhich may
vary over a quite broad ranged is necessary in many complex
plasma experimentsf1–6g. The traditional way to derive the
ion drag force on the test charged particle—the so-called
“pair collision approach”—is based on the solution of the
mechanical problem of the ion motion in the field of the
particle. Having the ion trajectories calculated, the force is
then obtained as the momentum transfer averaged over a
given velocity distribution of ions. Initially, the pair collision
approach was applied in Refs.f7,8g to calculate ion drag in
the “Coulomb scattering” limit—basically, this is the linear
approximation assuming ion scattering with small angles
within the Debye sphere. Recently, the approach was devel-
oped by Khrapaket al. f9,10g to take into account large-
angle scattering.

The pair collision approach is intrinsically inconsistent.
There are the following reasons for that:sid While the ion
interacts with the charged particle, the interactions with other
speciessin particular, ion-neutral collisionsd are neglected.
Actually, this basic assumption gives the name to the ap-
proach.sii d The approachpresumesa certain potential distri-
bution around the test chargesusually, the isotropic Debye-
Hückel or Yukawa potentiald, although the potential is a self-
consistent function of the plasma environmentse.g., ion flow
velocityd. siii d The approachpresumescertain distribution
function for ionssusually, the shifted Maxwellian distribu-
tiond.

All these issues can be successfully resolved by employ-
ing the self-consistentkinetic approach. Instead of deriving
single-ion trajectories and then integrating the resulting mo-
mentum transfer, one should solve the Poisson equation
coupled to the kinetic equation for ions and obtain the self-
consistent electrostatic potential around the particle. The po-
larization electric field at the origin of the test charge gives
us the force on the particle. As long as the linear approxima-
tion is applicablesthe so-called “linear dielectric response

formalism,” e.g.,f11gd, the whole problem is basically re-
duced to the calculation of the appropriate plasma response
function spermittivityd. Recently, Ivlevet al. f12g proposed
to use this formalism to calculate the ion drag force in the
plasma with subthermal flow, which allowed us to take into
account ion-neutral collisions.

In this paper we generalize the linear kinetic approach
proposed in Ref.f12g: We discuss applicability of the model
collision integral for ionssSec. IId and calculate the self-
consistent plasma response for arbitrary velocity of the
plasma flow and arbitrary frequency of the ion-neutral colli-
sions sSec. IIId. The latter allows us to calculate self-
consistently the ion drag force on the test charged particle
sSec. IVd. In conclusionsSec. Vd, we discuss the applicabil-
ity of the proposed approach, compare the obtained results
with the results from the pair collision approach, and dem-
onstrate the importance of the self-consistent kinetic consid-
eration.

II. KINETIC EQUATION

In many cases, collisions in weakly ionized plasmas can
be included into consideration in the form of amodelcolli-
sion integral, which is expressed in terms of linearsoften
algebraicd operatorsf13–16g. It cannot be derived rigorously
from the Boltzmann integral: The particular functional form
of the model integral is based on phenomenology and fulfills
certain conservation lawsse.g., particle number, momentum,
energy, etc.d. Although the model integrals cannot describe
processes accompanying collisions “precisely,” such an ap-
proachsbeing properly chosen for a particular problemd usu-
ally allows us to avoid unnecessary mathematical complexity
related to the treatment of the Boltzmann integral and, at the
same time, retains the physical essence of the considered
process.

For the ion-neutral collisions we propose to employ the
model collision integral in the Bhatnagar-Gross-Krook
sBGKd form f17,18g. Then the kinetic equation for ions is
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Maxwellian velocity distribution of neutrals normalized to
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unity, vT=ÎT/m is the thermal velocity of neutrals, andn
=efdv is the ion density. The collision operator is propor-
tional to the effective frequency of the ion-neutral collisions,
n, which is assumed to beconstant. The charge-exchange
collisions are usually dominant in typical low-density dis-
charge plasmassfor ions in their parent gasesd. For this type
of collisions, each “eliminated” ion is substituted by an ion
“created” from a neutral—exactly what the right-hand side of
Eq. s1d stands for. In a homogeneous plasma without external
perturbation we obviously havef =nF. Hence, thefunctional
form of the BGK approach is particularly suitable for the
description of the charge-exchange collisions. We note that
in reality the collision cross section is a rather complicated
monotonically decreasing function of the ion velocity which
cannot be generally approximated by any simple scaling
f14,19g. It is reasonable, therefore, to choose the approxima-
tion n=const which allows us to employ the model collision
operator in the convenient form of Eq.s1d.

“Unperturbed” distribution

In order to calculate the force on the test charged particle
embedded into a flowing plasma, we have to obtain the self-
consistent electric fieldEp induced in the plasma by the par-
ticle. The plasma flow is caused by aglobal electric fieldE0
which is assumed to be known. Then the total electric field is
E=E0+Ep. The distribution function and the density aref
= f0+ fp and n=n0+np, respectively, withf0 determined by
the “unperturbed” equation

u
]f0

]vi

= n0F − f0, s2d

where the subscripti denotes the direction along the global
field swhich is supposed to be homogeneousd, n0 is the am-
bient sconstantd ion density, andu=eE0/mn is the ion flow
velocity in the mobility limit. Equations2d readily yields the
“unperturbed” distribution

f0svi,v'd =
n0F'

u
E
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where we introduced longitudinal and transverse
factors of the neutral velocity distribution,Fisvid
=s2pvT

2d−1/2 exps−vi
2/2vT

2d and F'sv'd=s2pvT
2d−1 exps−v'

2 /
2vT

2d, respectively, so thatF;FiF'. Without the global
field—i.e., in the limitu→0—we havef0→n0F. As long as
the plasma flow is subthermal the deviation of Eq.s3d from
the shifted Maxwellian distribution remains small,f0
.n0Fsvds1+uvi /vT

2d. However, foru*vT the deviation is
significant. One can easily see this, e.g., in the limit of cold
ions, T→0, when Eq.s3d tends tof0~dsv'dexps−vi /ud for
vi ù0 sand f0=0 for vi ,0d, instead off0~dsv−ud.

III. PLASMA RESPONSE

A self-consistent electric field of the test particle,Ep, can
be obtained from the solution of Eq.s1d coupled to the Pois-
son equation. In the linear approach, one should derive the
response function of the plasma—permittivity«—which de-

termines the Green function of the Poisson equation in the
plasma and, hence, yieldsEp. Let us first derive the ion re-
sponse. As usual, we present the perturbations in the form
fp~exps−ivt+ ik ·r d for the distribution function andEp

=−=wp=−ikwp for the field. We assumefp to be much
smaller thanf0 sthis automatically providesnp!n0d, whereas
the ratiouEp/E0u can be arbitrary. Then we obtain, from Eq.
s1d,

− isv − k ·vdfp + nSu
]fp

]vi

+ fpD = nnpF + i
ewp

m
k ·

]f0

]v
,

s4d

with f0 from Eq.s3d. The principal difference of Eq.s4d from
the conventionally used equation for the perturbed ion distri-
bution swhich is employed to derive the ion responsef18gd is
that the latter usually does not take into account deviations of
f0 from the equilibriumsin our case, Maxwelliand distribu-
tion. As we already mentioned in the previous section, the
unperturbed distributionf0 can be far from equilibrium due
to the presence of the global electric fieldE0. This fact is
taken into account on the right-hand side of Eq.s4d. Also, an
extra termnus]fp/]vid appears in the equation, due to the
presence of the global field. This term contributes to the
collisional broadening of the Landau resonance, in addition
to the conventional termnfp.

The plasma permittivity is«=1+xe+xi. For the electron
contribution we use the Boltzmann responsexe.sklDe

d−2.
The ion susceptibility follows from the Poisson equationxi
=−s4pe/k2dsnp/wpd. We obtain the relation betweennp

=efpdv andwp by integrating the solution of Eq.s4d over the
velocity space. Introducing the new variabledh=u−1dvi, af-
ter some routine algebra we derive the ion susceptibility in
the following form: xi =svT/lDind2J2/ s1−J1d. The ion De-
bye lengthlDi corresponds to the unperturbed densityn0,
and the functionsJ1,2 are:

J1sv,kd =E
0

`

expf− Cv,kshdgdh,

J2sv,kd =E
0

` h expf− Cv,kshdg
1 + iskiu/ndh

dh. s5d

The functionCv,k in Eq. s5d is given byCv,k =s1−iv /ndh
+ 1

2fikiu/n+skvT/nd2gh2.

Representation of the ion response via the Maxwellian
dispersion function

In principle, the problem of the plasma permittivity is
formally solved: The integrals in Eq.s5d rapidly converge
and can easily be calculated numerically or evaluated ana-
lytically in asymptotic cases. However, one can transform
the obtained results into a different, mathematically identical,
but physically much more sensible form. Using the well-
known representation for the dispersion function of theMax-
wellian plasma, Fsjd=2ije−j2

e−`
ij e−h2

dh f18,20g, we express
the first integral in Eq.s5d in terms ofF,
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J1sv,kd = −
in

v + in
Fsj1d,

j1 =
sv + ind/Î2kvT

Î1 + iskin/k2vTdMT

. s6d

Here we introduce the control parameter of deviation from
the Maxwellian equilibrium—thethermal Mach number

MT =
u

vT
,

which is the ratio of the flow velocityu to the ion thermal
velocity vT sin contrast to the usual definition of the Mach
number, whenu is normalized to the ion acoustic velocityd.
The variablej1 is the function ofMT. In order to trans-
form the second integral, we rewrite it in the form of a
double integral, J2=e0

`e0
`h expf−Cv,kshdgexph−f1

+ iskiu/ndhgxjdhdx, which can be expressed in terms of the
averagedF as follows:

J2sv,kd =
sn/kvTd2

1 + iskin/k2vTdMT
f1 + kFsj2dlg,

j2 =
sv − kivTMTx + ind/Î2kvT

Î1 + iskin/k2vTdMT

. s7d

The variablej2 is the function ofMT and the parameterx
over which the average is performed,k¯l=e0

`
¯e−xdx. Us-

ing representations ofJ1,2 from Eqs.s6d ands7d, we rewrite
the susceptibility in the final form

xisv,kd =
sklDid−2

1 + iskin/k2vTdMT3 1 + kFsj2dl

1 +
in

v + in
Fsj1d4 . s8d

Equations8d is the self-consistent ion susceptibility in a col-
lisional plasma with electric field. ForE0=0 si.e., MT=0d, it
reduces to the well-known expression for the Maxwellian
plasma ssee, e.g.,f18gd: The variables j1,2 tend to j
=sv+ ind /Î2kvT and, correspondingly,kFsj2dl→Fsjd.

Let us discuss how the plasma flowselectric field E0d
affects the ion responsexi. Equations3d shows that the un-
perturbed distribution functionf0 is anisotropic for finiteMT.
This is not just a shift in the velocity space, but also the
collisional anisotropy: The ion mean free path in the longi-
tudinal direction increases with the Mach number and for
MT*1 scales as,u/n;MT,, whereas in the transverse di-
rection it remains constant and equal to, swhere,=vT/n is
the “thermal” or “isotropic” mean free path atMT=0d.
Therefore, the terms proportional tokiMT in Eq. s8d represent
the contribution of the collisional anisotropy.sOf course, this
particular form of the anisotropy is peculiar to the casen
=const considered here, and it should be different ifn is
velocity dependent.d Another feature of Eq.s8d is that the ion
response is determined by theaveragedMaxwellian disper-
sion function. The reason is the following: The functionf0
can be considered as a “superposition” of shifted Maxwellian
distribution functions with “weights” u−1 exps−vi /uddvi

;e−xdx. Therefore,xi should be the superposition of the
Maxwellian dispersion functions with the same weights—
exactly what Eq.s8d stands for.

IV. ION DRAG FORCE

The self-consistent distribution of the electrostatic poten-
tial around motionless test chargeeZ located atr =0 is given
by the following formulaf11,21g:

wpsr d =E 4peZeik·r

k2«s0,kd
dk

s2pd3 . s9d

A charge embedded into any anisotropic medium induces the
polarization. The magnitude of the polarization field at the
charge origin determines the force acting on the particle,F
=−eZ=wpu r=0 sof course, in addition to the usual electrostatic
force due to the global field,eZE0d. In our case the aniso-
tropy is due to the plasma flow, and this induces the ion drag
force f12,22,23g. The force is obviously parallel to the flow
and can be written as

F = −
ie2Z2

p
E

0

kmax dk

k
E

−k

k kidki

«s0,kd
. s10d

For smallMT the ion drag force was shown to diverge loga-
rithmically at k→` f12g. For largeMT the divergence takes
place as well. This divergence is unphysical: There exists a
vicinity of the test charge,r &R, where the plasma perturba-
tions induced by the charge are too strong and the linear
approach is no longer valid. By an order of magnitude,R is
equal to the ion Coulomb radius—the distance at which the
energy of the electrostatic coupling is about the kinetic en-
ergy: i.e., R,e2uZu /Ekin. For the kinetic energy we
can employ the scalingEkin,Ts1+MT

2d, so that R
,RTs1+MT

2d−1, with RT=e2uZu /T the thermal sisotropicd
Coulomb radius. The spatial scalesr &R correspond tok
*R−1, which yieldskmax,RT

−1s1+MT
2d for the upper limit of

the integration. Basically, the criterium of applicability of
Eq. s10d is the relative smallness of theactual contribution
from the “nonlinear” regionr &R. A detailed discussion of
the applicability is given in Sec. V.

A. Analytic expression for MT™1

Substituting plasma permittivityfwith ion susceptibility
from Eq.s8dg into Eq.s10d, one can numerically calculate the
ion drag force for arbitrary collision frequencysmean free
pathd and Mach numberselectric fieldd, using the tabulated
values ofFsjd f20g. However, in the limiting cases of small
and large Mach numbers analytic expressions can be ob-
tained. Introducing the linearized plasma screening length
for zero Mach number,l−1=ÎlDi

−2+lDe
−2, and the dimension-

less force,F̃=Fsl /eZd2, we expand« into a series over small
MT and derive the ion drag force forMT!1 swith the so-
called “logarithmic accuracy;” see Sec. Vd:

F̃ .
1

3
Î 2

p
Fln

l

RT
+

1
Î2p

Ksl/,dGMT + OsMT
3d, s11d

where
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Ksxd = x arctanx + SÎp

2
− 1D x2

1 + x2 −Îp

2
lns1 + x2d

is the “collision function.” Equations11d coincides with the
formula derived recently by Ivlevet al. f12g using the dielec-
tric function of theMaxwellianplasma. This coincidence is
becausef0 fEq. s3dg reduces to the shifted Maxwellian dis-
tribution in the limit MT!1 sas long as the effects linear on
MT are concernedd. For ,@l the functionK is negligibly
small compared to the Coulomb logarithm and Eq.s11d
yields the standard collisionless expression for the ion drag
force derived from the pair collision approach in the linear
approximationssee, e.g.,f7–9gd. In terms of the ion kinetics,
the origin of this force is the Landau damping. In the oppo-
site limit ,!l the hydrodynamic effects become more im-
portant, so that the mean free path rather than the screening
length starts playing a role of the spatial scale. Thenl dis-
appears from the argument of the Coulomb logarithm, and
the expression in the brackets in Eq.s11d changes from
lnsl /RTd to lns, /RTd+Îp /8sl /,d. If collisions become
“very frequent,” ,&RT, the kinetic effects disappear com-
pletely and the force can be derived from the fluid dynamics

approach, resulting toF̃. 1
6sl /,dMT. Note that in rf plasmas

electrons do not contribute to the force, because the electron
temperature in low-density plasmas is typically two orders of
magnitude higher than the ionsneutrald temperature and,
therefore, the linearized plasma screening length forMT!1
is determined by ions,l.lDi. sNote, however, that in dc
plasmas the situation might be different; see Ref.f24g.d

B. Analytic expression for MTš1

As the Mach number increases, the deviation off0 from
the Maxwellian distribution becomes stronger. OnceMT*1,
the conventional susceptibility of the Maxwellian plasma is
no longer applicable for ions, and Eq.s8d should be used
instead. In order to calculate the ion drag force forMT@1,
mathematically it is more convenient to employ Eq.s5d. The
integralsJ1,2s0,kd are determined by the functionC0,k =h
+ 1

2askdh2, with a=k2,2+ iki,MT;a1+ ia2. The coefficient
askd is a measure of collisionality: Foruau!1, both longitu-
dinal s,MT,d and transverses,,d mean free paths are
shorter than the corresponding spatial scalessin terms ofkd,
and the ion response is due to hydrodynamic effects. The first
two terms of the power series areJ1.1−a and J2.1
−2ia2−3a. In the opposite limituau@1, the mean free path
exceeds the spatial scale at least in one direction, and then
the kinetic effectssviz., Landau resonanced become crucial.
The asymptotic expansion yieldsJ1.Îp /2a−1/2 and J2.
−iÎp /2a2

−1a−1/2. Therefore, we can divide the integration re-
gion in Eq. s10d into “collisional” suau!1d and “collision-
less” suau@1d subregions and use the corresponding limiting
expressions forJ1,2. The resulting collisional contribution
shydrodynamic effectsd turns out to be proportional toMT

−2,
whereas the collisionless partsLandau resonanced scales as
~MT

−1 and, hence, is more important at large Mach numbers.
The integration finally yields the force forMT@1 swith the
logarithmic accuracyd:

F̃ .Î 2

p
lnS4,MT

RT
DMT

−1 + OsMT
−2d. s12d

Equations12d does not depend explicitly on the screening
length. Instead, the mean free path determines the argument
of the logarithmsalthough the force is purely due to the
kinetic effectsd. Physically, this is because the contribution of
ions to the screening in the transverse direction decreases
with MT and eventually disappears. Therefore, the screening
length increases atMT*1 and tends asymptotically to the
electronDebye lengthlDe swhich is much large than the ion
Debye lengthd f25g. In turn, the mean free path in the trans-
verse direction remains constant and equal to,. Therefore, if
lDe exceeds, swhich is often the case in experiments—
unless the gas pressure is too low—and was assumed in the
above calculationsd, the latter plays a role of the transverse
spatial scale at sufficiently largeMT. The reason why the
collision effects are weak at largeMT is that the “total”
s; longitudinald mean free path increases as,MT, and
eventually becomes much larger than other spatial scales.

C. Numerical calculations

It is convenient to represent the normalized forceF̃ as a
function of the Mach number and two parameters: The ratio
of the siond screening length to thesthermald Coulomb ra-
dius,l /RT, and the ratio of the screening length to thesther-
mald mean free path,l /,. The first parameter is basically the
argument of the Coulomb logarithm which characterizes the
screening in the collisionless limit, and the second one is the
measure of collisionality for ions. Figure 1 shows the ion
drag force versus the Mach number for different values of
these two parameters. One can see that analytic asymptotes
agree fairly well with the numerical results—depending on
the value of l /,, the discrepancy is&10% at MT
&0.2–0.3fEq. s11dg and MT*10–20 fEq. s12dg. At small
Mach numbers, as long as the mean free path exceeds the
screening length, the collisions do not affect the force, but in
the strongly collisional case,,!l, the force is increased. At
largeMT the effect is opposite—the force increases with the
mean free path, although this dependence is rather weak
slogarithmicd.

V. DISCUSSION AND CONCLUSIONS

A. Importance of the self-consistent approach

In order to highlight importance of the self-consistent ap-
proach proposed here to calculate the ion response and the
drag force, let us compare the derived asymptotic expression
for the force at large Mach numbersfEq. s12dg with the scal-
ing which follows from the Maxwellian dispersion function
f18g. The latter can be formally obtained by setting first
MT=0 in Eq.s8d for the ion susceptibility and then calculat-
ing the force from Eq. s10d with «sv ,kd at v=−kiu

;−kivTMT. This readily gives usF̃~MT
−2 ln MT for MT@1,

in contrast to Eq.s12d. Thus, the self-consistent approach
yields the force which is much larger than the results of
calculations with the shifted Maxwellian distribution. Note
that the traditional pair collision approach at large Mach
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numbers also gives the scalingF̃~MT
−2 ln MT f8,25,26g.

The reason why the power factor of the force scales as
~MT

−1 at large Mach numbers can be understood from Eq.
s3d: As we already discussed in the end of Sec. III, the un-
perturbed distribution f0 is essentially a superposition
of shifted Maxwellian functions with the weights
u−1 exps−vi /uddvi. Therefore, also the total force is a super-
position of the forces calculated for the shifted Mawellian
distributions with the corresponding weights. AtMT@1, the
contribution of ions with the longitudinal velocityvi to the
force scales as~vi

−2 f8,9g sneglecting the logarithmic factord.
Hence, the superpositionsviz., integrationd yields the power
dependence~u−1evT

` vi
−2 exps−vi /uddvi ~MT

−1+OsMT
−2d for

the total force, in agreement with Eq.s12d. The obtained
scaling does not depend on a functional form of the weights
which, in turn, are determined by a particular dependence of
the collision frequency on the ion velocitysin our case,n
=constd. Therefore, we can presume that this scaling is a
generic feature of the self-consistent approach at large Mach
numbers.

Another feature of the obtained results is the dependence
of the force on the ion mean free path. Figure 1 shows that
frequent ion-neutral collisionss,!ld enhance the force at

smallMT. This is due to the ion focusingf12g: Each collision
“eliminates” the angular momentum the ion hadswith re-
spect to the particled before the collision. Therefore, the mo-
tion of the flowing ions becomes more “radial” due to the
attraction towards the charged particle—the “focusing cen-
ter” downstream moves closer to the particle. This additional
focusing implies a local increase of the ion density and,
hence, increase of the polarizationsforced. This mechanism,
however, can operate only if the field of the charged particle
is stronger than the global fieldE0. Otherwise, ifE0 is rela-
tively strong sMach number is larged, it shoulddefocusthe
ion trajectories: After each collision, the ions should acceler-
ate mostly alongE0. An increase of collisionalitysdecrease
of ,d at constantMT~E0, implies an increase of the global
electric field and, hence, stronger defocusing. In turn, the
latter implies the decrease of the polarizationsforced which
we see in Fig. 1.

It is noteworthy that the force acting on a motionless test
charge embedded in a collisional flowing plasma is not
equivalent to the force acting on the moving charge in a
plasma at rest. The principal difference between these two
cases can be easily understood in terms of the reference
frames: For the moving test charge, the ions flow with re-
spect to the chargetogetherwith neutrals and, hence, keep
the Maxwellian distribution. In this case, the force on the
charge is determined by the Maxwellian dispersion function.
In contrast, when the charge is at rest and the ions flow, the
neutrals remain at rest as well. Of course, this changes the
ion distribution functionfsee Eq.s3dg and, thus, the ion drag
force.

B. Remarks on the applicability

The applicability of the linear approach presumes large
arguments of the logarithms in Eqs.s11d and s12d—the so-
called “logarithmic accuracy”f12,21g. For MT!1 this is the
well-known condition for the Coulomb logarithm,l /RT@1
f9,10,21g. It is very interesting that larger Mach numbers
imply better applicabilityof the linear theory—the argument
of the logarithm in Eq.s12d grows withMT. Physically this is
because the range of nonlinear interaction scales asR~MT

−2,
so that the upper limitkmax in Eq. s10d increasesf27,28g.

The criteria of the applicability can be obtained as fol-
lows: Calculating the force we neglected the contribution of
ions from the “nonlinear region” within the Coulomb radius,
r &R. This contribution can be easily estimated in terms of
the trajectories: Impact parameters of ions contributing to the
polarization in this region do not exceedR. For MT!1 this
yields logarithmically small correction, providedl /RT@1
f12g. At MT@1 the “nonlinear” momentum transfer does not
exceed the momentum flux,mn0vi

2R2. The Coulomb radius
scales asR.RTsvT/vid2 and, hence, the resulting correction
to the force is less than ,smn0vT

4RT
2 /udevT

u vi
−2dvi

,seZ/ld2MT
−1. Thus, the contribution of nonlinear effects at

large Mach numbers is logarithmically small as wellfsee
Eq. s12dg.

The calculations were performed for a pointlike particle.
In reality, however, the particle has a finite sizesradiusd a
and, therefore, a certain fraction of ions is absorbed on it: In

FIG. 1. Normalized ion drag force versus the thermal Mach
number of the ion flowMT. The force depends on two parameters:
the ratio of the ion screening length to the thermal Coulomb radius,
l /RT, and the ratio of the screening length to the thermal mean free
path,l /,. The data points are obtained by numerical integration of
Eq. s10d with the ion susceptibility from Eq.s8d, for l /RT=10 sad
and l /RT=100 sbd. Symbols representl /,=0.1 shd, l /,=1 ssd,
and l /,=10 snd. Analytic asymptotes at small and large Mach
numbersfEqs. s11d and s12d, respectivelyg correspond to the same
values ofl /, ssolid, dashed, and dotted lines, respectivelyd.
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terms of the trajectories, the ions having an impact parameter
smaller than the so-called “absorption radius”rabs transfer
their momentum in direct collisions with the particlef8g.
Thus, the obtained results are valid as long as the contribu-
tion of the absorbed ions to the force is small. The condition
to neglect the absorbtion is thatrabsshould be much smaller
thanR f12g. In the “collisionless” caseswhen the ion mean
free path exceeds the spatial scale of the problem, e.g.,ld,
the absorption radius is determined by the “orbit-motion-
limited” sOMLd theory,rabs.aÎ1+R/a f8,29,30g. For small
Mach numbers, thesthermald Coulomb radius is usually
much larger than the particle size and, hence, the absorption
does not affect the results. As the Mach number grows, the
role of the ion absorption increases. This is because the Cou-
lomb radius rapidly falls off to zero, whereas the absorption
radius tends to the geometrical limit,rabs.a. Comparing the
resulting direct momentum flux on the particle,,mn0u

2a2,
with Eq. s12d we obtain the conditionMT& sRT/ad2/3 for the
absorption to be neglected. Typically,RT/a,100–300 in
complex plasmasf9g, so that the absorption does not play
noticeable role up toMT&30–50. Note also that whenR
becomes smaller thana, but the absorption still does not
affect the force—i.e., atsRT/ad1/2&MT& sRT/ad2/3—the par-
ticle size rather than the Coulomb radius determines the up-
per limit of integration in Eq.s10d: i.e., kmax,a−1. In the
“collisional” case swhen the ion mean free path becomes
comparable withld the absorption changes:rabs increases
with n f31–33g. Nevertheless, for large Mach numbers this
does not affect the linear theory, since the ion motion is
basically collisionlessssee Sec. IVd. For MT!1, the ion ab-
sorption does not change the results of the linear theory as
well f12g. sOf course, the absorption itself changes the grain
charge and, hence, implicitly affects the force.d The ion-
neutral collisions also cause the ion trapping in the vicinity
of the grainf32,33g, which can strongly change the potential
distribution around the particle and thus influence the ion
drag. This, however, is an essentially nonlinear process and
cannot be considered in the framework of the linear theory.

C. Conclusions and unresolved issues

The linear kinetic approach and the pair collision ap-
proach are complementary to some extent: The pair collision
approach is more suitable to describehighly nonlinear colli-

sionlesscases when both the ion Coulomb radius and the
mean free path exceed the spatial scale of the problemse.g.,
ld f9,10g. This situation is typical for subthermal ion flows,
when R.RT is large compared to the screening length.
Small Mach numbers also imply weak distortion of the po-
tential around the charged particle and weak deviation of the
ion distribution from the shifted Maxwellian function. There-
fore, there is no need to employ the self-consistent kinetic
approach in this case. On the other hand, for suprathermal
ions swhen MT*1 and the linear theory can be better ap-
pliedd both the particle potential and ion distribution function
are highly anisotropic, and then the self-consistent kinetic
approach is necessary. And, of course, the kinetic approach
should be used in strongly collisional cases.

In this paper we assume the global fieldE0 to be homo-
geneous, which corresponds to the ion flow in the mobility
limit fsee Eqs.s2d ands3dg. This limit requires the ion mean
free path, to be smaller than the scaleLE of spatial varia-
tions of E0. In principle, the kinetic equation can be solved
for arbitrary ratio betweenLE and ,. The considered limit
LE@,, being very useful for practical applications, is also
relatively simple for calculations. It is important, however, to
study the opposite “collisionless” limitLE!,, when ions
move over ballistic trajectories between rare collisions. This
case will be considered elsewheref25g.

Another issue is the dependence of the ion collision fre-
quencyn on the velocity. This dependence might play an
important role at small Mach numbers, when the ion energy
is relatively small and, hence, the mean free path rather than
the collision frequency should be considered constant
f14,19g. In this case, the collision operator in the kinetic
equation has the integral form, which makes the algebra far
more complicated and requires extensive numerical simula-
tions.

And finally, in complex plasmas one often has to deal
with the situation when the linear treatment is not possible
for the ion drag force. As we mentioned above, this problem
is important for small Mach numbersse.g., bulk plasmasd
when the linear approach can be applied only for sufficiently
small ssubmicrond particlesf12g. In this case, although the
proposed form of the model collision integral remains valid,
the self-consistent approach requires solution of the nonlin-
ear Poisson equation coupled to the kinetic equation for ions.
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