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Kinetic approach for the ion drag force in a collisional plasma
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The linear kinetic approach to calculate the ion drag force in a collisional plasma is generalized. The model
collision integral(for ion-neutral collisionsis discussed and employed to calculate the plasma response for
arbitrary velocity of the plasma flow and arbitrary frequency of the collisions. The derived plasma response is
used to calculate the self-consistent force on the test charged particle. The obtained results are compared to
those of the traditional pair collision approach, and the importance of the self-consistent kinetic consideration
is highlighted. In conclusion, the applicability of the proposed approach is discussed.
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I. INTRODUCTION formalism,” e.g.,[11]), the whole problem is basically re-

The ion drag force—the momentum transfer from flowing duced to the calculation of the appropriate plasma response
ions to charged microparticles embedded into a plasma—ig/nction (permittivity). Recently, Ivievet al. [12] proposed
an inevitable and exceptionally important factor in dustyt0 use this formalism to calculate the ion drag force in the
(complex plasmas. lon flows are usually induced due toPlasma with subthermal flow, which allowed us to take into
“global” large-scale electric fields always existing in plasmasaccount ion-neutral collisions.
(e.g., ambipolar or sheath fieldnowledge of the ion drag In this paper we generalize the linear kinetic approach
force as a function of the plasma parametexbich may proposed in Refl12]: We discuss applicability of the model
vary over a quite broad rangis necessary in many complex collision integral for ions(Sec. 1) and calculate the self-
plasma experimenid—6]. The traditional way to derive the consistent plasma response for arbitrary velocity of the
ion drag force on the test charged particle—the so-calleglasma flow and arbitrary frequency of the ion-neutral colli-
“pair collision approach”—is based on the solution of thesions (Sec. Il). The latter allows us to calculate self-
mechanical problem of the ion motion in the field of the consistently the ion drag force on the test charged particle
particle. Having the ion trajectories calculated, the force isgSec. IV). In conclusion(Sec. V), we discuss the applicabil-
then obtained as the momentum transfer averaged over ity of the proposed approach, compare the obtained results
given velocity distribution of ions. Initially, the pair collision with the results from the pair collision approach, and dem-
approach was applied in Ref¥,8] to calculate ion drag in onstrate the importance of the self-consistent kinetic consid-
the “Coulomb scattering” limit—basically, this is the linear eration.
approximation assuming ion scattering with small angles
within the Debye sphere. Recently, the approach was devel- Il. KINETIC EQUATION
oped by Khrapaket al. [9,10] to take into account large-
angle scattering.

The pair collision approach is intrinsically inconsistent.
There are the following reasons for th&ity While the ion

In many cases, collisions in weakly ionized plasmas can
be included into consideration in the form ofhzodelcolli-
sion integral, which is expressed in terms of linéaften
Igebrai¢ operatord13-16. It cannot be derived rigorously

interacts with the charged particle, the interactions with othe?rom the Boltzmann integral: The particular functional form

species(in particular, ion-neutral collisionsare neglected ; . :
Actually, this basic assumption gives the name to the appf the model integral is based on phenomenology and fulfills

proach.(ii) The approaclpresumes certain potential distri- certain conservation lawe.g., partl_cle number, momentum,
bution around the test chargasually, the isotropic Debye- S¢ 9 etg. Although the model integrals cannot describe
Huickel or Yukawa potential although the potential is a self- processes accompanying collisions pr_emsely, such an ap-
consistent function of the plasma environméng., ion flow proach(being properly chosen for a particular probleasu-

velocity). (iii) The approachpresumescertain distribution ally allows us to avoid unnecessary mathema'ucal complexity
function for ions(usually, the shifted Maxwellian distribu- related to the treatment of the Boltzmann integral and, at the

tion) same time, retains the physical essence of the considered

All these issues can be successfully resolved by employprolfgrsihe ion-neutral collisions we prooose to emplov the
ing the self-consistenkinetic approach. Instead of deriving prop ploy

single-ion trajectories and then integrating the resulting moinodel collision integral in the Bhatnagar-Gross-Krook

mentum transfer, one should solve the Poisson equatio%BGK) form [17,18. Then the kinetic equation for ions is
coupled to the kinetic equation for ions and obtain the self- of o eE of
consistent electrostatic potential around the particle. The po- P APl v(n® - f), 1)
larization electric field at the origin of the test charge gives

us the force on the particle. As long as the linear approximawhere <I)(v)=(27Tv$)_3’26X|i—02/2012-) is the (isotropig
tion is applicable(the so-called “linear dielectric response Maxwellian velocity distribution of neutrals normalized to
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unity, vT:\iﬁn is the thermal velocity of neutrals, anmd  termines the Green function of the Poisson equation in the
=[fdv is the ion density. The collision operator is propor- plasma and, hence, yields,. Let us first derive the ion re-
tional to the effective frequency of the ion-neutral collisions,sponse. As usual, we present the perturbations in the form
v, which is assumed to beonstant The charge-exchange f,xexp(-iwt+ik-r) for the distribution function andE,
collisions are usually dominant in typical low-density dis- =-V¢,=—-ik¢, for the field. We assumé, to be much
charge plasma€or ions in their parent gaspd-or this type  smaller tharf, (this automatically prOV|deBp< ng), whereas

of collisions, each “eliminated” ion is substituted by an ion the rat|o|E /Eg| can be arbitrary. Then we obtain, from Eq.
“created” from a neutral—exactly what the right-hand side of(1),
Eq. (1) stands for. In a homogeneous plasma without external

perturbation we obviously havie=n®. Hence, thdunctional —i(w—k -v)f, + V<u‘9_fe +f ) = + ie_‘PEk . %’
form of the BGK approach is particularly suitable for the P P P m N
description of the charge-exchange collisions. We note that (4)

in reality the collision cross section is a rather complicated
monotonically decreasing function of the ion velocity which With fo from Eq.(3). The principal difference of Ed4) from
cannot be generally approximated by any simple scalinghe conventionally used equation for the perturbed ion distri-
[14,19. It is reasonable, therefore, to choose the approximabution (which is employed to derive the ion respori$8)) is
tion »=const which allows us to employ the model collision that the latter usually does not take into account deviations of
operator in the convenient form of E€). fo from the equilibrium(in our case, Maxwelligndistribu-
tion. As we already mentioned in the previous section, the
unperturbed distributiorfiy can be far from equilibrium due
to the presence of the global electric fidig. This fact is

In order to calculate the force on the test charged particléaken into account on the right-hand side of E4). Also, an
embedded into a flowing plasma, we have to obtain the selfextra termvu(of o/ dv)) appears in the equation, due to the
consistent electric fielé, induced in the plasma by the par- presence of the global field. This term contributes to the

ticle. The plasma flow i is caused bygeobal electric fieldE;  collisional broadening of the Landau resonance, in addition
which is assumed to be known. Then the total electric field i3g the conventional termaf,,

“Unperturbed” distribution

E=Eo+Ep. The distribution function and the density afe The plasma permitt|V|ty i$=1+x.+x;. For the electron
=fot+f, and n= No+np, respectively, withfy determined by  contribution we use the Boltzmann responge= (kK\p ) 2.

the “unperturbed” equation The ion susceptibility follows from the Poisson equatign
i, =—(4melk?)(ny/ ¢,). We obtain the relation between,

ua =ngd - fo, (2)  =[f,dv and¢, by integrating the solution of E¢4) over the

velocny space. Introducing the new varialde=u1dv,, af-
where the subscrigt denotes the direction along the global ter some routine algebra we derive the ion susceptibility in
field (which is supposed to be homogenepur is the am-  the following form: x;=(v/\p¥)27,/ (1-7;). The ion De-
bient (constank ion density, andu=eE,/mv is the ion flow bye lengthAp; corresponds to the unperturbed density
velocity in the mobility limit. Equation(2) readily yields the and the functions7, , are:

“unperturbed” distribution

v — Ji(w,k) = f exd- ¥, k(7]dn,
n®, [ , v - ) o,
fo(U”,UJ_) = %J (Dl(U”)eX%_ %)dl} y (3) 0
where we introduced longitudinal and transverse Jolw,K) = fc M (5)
factors of the neutral velocity distribution (IDH(UH) 1+i(ku/v)y

—(Zm) = 12 exp(— UH/ZUT) and® (v, )= (27TU-|-) exp(-vY 2
ZUT) respectively, so thatb=®,® . Without the global
field—i.e., in the limitu— 0—we havefy,— ny®d. As long as
the plasma flow is subthermal the deviation of Eg). from
the shifted Maxwellian distribution remains smalfg
zno<1>(v)(1+UU”/v$). However, foru=uv; the deviation is
significant. One can easily see this, e.g., in the limit of cold
ions, T—0, when Eq.(3) tends tofyx 8(v, )exp(-v,/u) for In principle, the problem of the plasma permittivity is
v,=0 (andf,=0 for v, <0), instead offy S(v-u). formally solved: The integrals in EJ5) rapidly converge
and can easily be calculated numerically or evaluated ana-
lytically in asymptotic cases. However, one can transform
the obtained results into a different, mathematically identical,
A self-consistent electric field of the test partic, can ~ but physically much more sensible form. Using the well-
be obtained from the solution of E€) coupled to the Pois- known representation for the dispersion function of fthex-
son equation. In the linear approach, one should derive thevellian plasma (&) =2iée™¢ f'§ e d# [18,20, we express
response function of the plasma—permittivity-which de-  the first integral in Eq(5) in terms of F,

The function¥,,, in Eq. (5) is given by¥,,=(1-iw/v)7n
+3[ikyu/ v+ (kot/ )] 7%

Representation of the ion response via the Maxwellian
dispersion function

IIl. PLASMA RESPONSE
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iy =eXdx. Therefore,y; should be the superposition of the
Ji(w,k) =~ w+iu]:(§1)' Maxwellian dispersion functions with the same weights—
exactly what Eq(8) stands for.
(w+iv)/N2kot IV. ION DRAG FORCE

(6)

1 = / . 2 "
V1 +ilkp/kor)My The self-consistent distribution of the electrostatic poten-
Here we introduce the control parameter of deviation fromtial around motionless test chargé located atr =0 is given

the Maxwellian equilibrium—the¢hermal Mach number by the following formula[11,21]:
u 4meZé" dk
-— = = 9
Mr v’ #(r) J k%(0,k) (2m)3 ©

which is the ratio of the flow velocity to the ionthermal A charge embedded into any anisotropic medium induces the
velocity v7 (in contrast to the usual definition of the Mach polarization. The magnitude of the polarization field at the
number, wheru is normalized to the ion acoustic velogity —charge origin determines the force acting on the parti€le,

The variable¢; is the function ofMt. In order to trans- :—eZV<pp|r=o (of course, in addition to the usual electrostatic
form the second integral, we rewrite it in the form of a force due to the global fieldsZE). In our case the aniso-
double integral,  J,=[{fonexd-Y,k(n]expg-[1  tropy is due to the plasma flow, and this induces the ion drag
+i(kyu/ v) p]x}d7ndx, which can be expressed in terms of the force [12,22,23. The force is obviously parallel to the flow
averagedF as follows: and can be written as
: k, k
(vikvt)? ie?z2 J max gk (¢ kdk,
K)=———5—[1+(F , F=- — | - (10
Jow,k) 1 +i(kHV/k2vT)MT[ (F(EN] 7)o k) s(0K)

N For smallM+ the ion drag force was shown to diverge loga-
_ (@~ kpMox+i VivZkor (7)  rithmically atk— e [12]. For largeMy the divergence takes
V1 +i(k KMt ' place as well. This divergence is unphysical: There exists a
. . . vicinity of the test charge, <R, where the plasma perturba-
The var|_able§2 is the f“f?c“on ofMy and t[le pa_1>r<ameter tions induced by the charge are too strong and the linear
over which the average is performeel;)=Jo---€dx Us-  j5510ach is no longer valid. By an order of magnitullds

ing representations of; , from Egs.(6) and(7), we rewrite  gqua] to the jon Coulomb radius—the distance at which the

2

the susceptibility in the final form energy of the electrostatic coupling is about the kinetic en-
()2 1+(F(&)) ergy: i.e., R~e2|Z|/£kin: For the kinetic energy we
xi(w,k) = — 5 _ . (8 can employ the scaling&,~T(1+M3), so that R
LritkpfCooMel L 1z ~Ry(1+M2)71, with Ry=€?Z|/T the thermal (isotropid
o+ly Coulomb radius. The spatial scalessR correspond tok

Equation(8) is the self-consistent ion susceptibility in a col- =R _1' which yieldsknma~ RT1(1+M$) for the upper limit of
lisional plasma with electric field. Fdg,=0 (i.e., My=0), it the integration. Basically, the criterium of applicability of
reduces to the well-known expression for the MaxwellianEd- (10) is the relative smaliness of trectual contribution
plasma (see, e.g.,[18]): The variablesé; , tend to & from the “nonlinear” regiom <R. A detailed discussion of
=(w+iv)/\2kv7 and, correspondingly,F(&,)) — F(&). the applicability is given in Sec. V.

Let us discuss how the plasma flofglectric field Ep)
affects the ion responsg. Equation(3) shows that the un-
perturbed distribution functiofy, is anisotropic for finiteM-. Substituting plasma permittivitpwith ion susceptibility
This is not just a shift in the velocity space, but also thefrom Eq.(8)] into Eq.(10), one can numerically calculate the
collisional anisotropy: The ion mean free path in the longi-ion drag force for arbitrary collision frequendynean free
tudinal direction increases with the Mach number and forpath and Mach numbefelectric field, using the tabulated
M:=1 scales as-u/v=M7{, whereas in the transverse di- values of 7(¢) [20]. However, in the limiting cases of small
rection it remains constant and equal{téwhere¢=v{/vis  and large Mach numbers analytic expressions can be ob-
the “thermal” or “isotropic” mean free path avl;=0). tained. Introducing the linearized plasma screening length
Therefore, the terms proportionalkgM+ in Eq. (8) represent  for zero Mach numben™*= \r’)\B?HCDZe, and the dimension-

the contribution of the collisional anisotropDf course, this  |ggg force]E:F()\/eZ)% we expand: into a series over small

Earticular for_m of the anisotropy is peculiar to the case . and derive the ion drag force fovi;<1 (with the so-
=const considered here, and it should be different ifs called “logarithmic accuracy:” see Sec):V

velocity dependentAnother feature of Eq8) is that the ion
response is determined by thgeragedMaxwellian disper- ~ 1 \/E{
o

A. Analytic expression for M<€1

sion function. The reason is the following: The functign 3
can be considered as a “superposition” of shifted Maxwellian
distribution functions with “weights” u™texp-v,/u)dv,  where

N1
In —+— /co\/e)] M+0O(M3), (11
Rr 27
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T X \/; 5 = \/E <4€MT) -1 -2
K(x)—xarctanx+(\/;—1)1+xz— Eln(1+x) F= ;In R, M7+ O(M79). (12

is the “collision function.” Equatior(11) coincides with the ~Eduation(12) does not depend explicitly on the screening
formula derived recently by Ivieet al.[12] using the dielec- |€ngth. Instead, the mean free path determines the argument
tric function of theMaxwellian plasma. This coincidence is ©f the logarithm (although the force is purely due to the
because, [Eq. (3)] reduces to the shifted Maxwellian dis- !(lnetlc effects. Phy§|cal!y, this is because th.e co_ntrlbutlon of
tribution in the limitM;<1 (as long as the effects linear on 10NS to the screening |n.the transverse direction decrea_ses
M, are concerned For €3\ the functionk is negligibly with MT_ and eventually disappears. Therefore,. the screening
small compared to the Coulomb logarithm and Egl) length increases avl;=1 an_d tends asymptotically to _the
yields the standard collisionless expression for the ion dra§'€ctronDebye lengthhpe (which is much large than the ion
force derived from the pair collision approach in the linearPebye length[25]. In turn, the mean free path in the trans-
approximation(see, e.gf7-9)). In terms of the ion kinetics, Verse direction remains constant and equg‘l.tﬁherefore, if

the origin of this force is the Landau damping. In the oppo-Mpe €xceedst (which is often the case in experiments—
site limit €<\ the hydrodynamic effects become more im- unless the gas pressure is too low—and was assumed in the
portant, so that the mean free path rather than the screeniff©Ve calculations the latter plays a role of the transverse
length starts playing a role of the spatial scale. Thedis- ~ SPatial scale at sufficiently largkly. The reason why the
appears from the argument of the Coulomb logarithm, angllision effects are weak at largkly is that the “total

the expression in the brackets in EQ1) changes from (~ longitudina) mean free path increases asM+({ and
IN(N/Ry) to In(€/RT)+\s’%()\/€)_ If collisions become €ventually becomes much larger than other spatial scales.
“very frequent,” ¢ <Ry, the kinetic effects disappear com- _ )

pletely and the force can be derived from the fluid dynamics C. Numerical calculations

approach, resulting t6= g(\/¢)M~. Note that in rf plasmas |t is convenient to represent the normalized fofcas a
electrons do not contribute to the force, because the electraainction of the Mach number and two parameters: The ratio
temperature in low-density plasmas is typically two orders ofof the (ion) screening length to thé&herma) Coulomb ra-
magnitude higher than the iomeutra) temperature and, dius, /Ry, and the ratio of the screening length to titeer-
therefore, the linearized plasma screening lengttMgr<1  mal) mean free pathy /€. The first parameter is basically the
is determined by ions\ =\p,. (Note, however, that in dc argument of the Coulomb logarithm which characterizes the
plasmas the situation might be different; see R24].) screening in the collisionless limit, and the second one is the
measure of collisionality for ions. Figure 1 shows the ion
drag force versus the Mach number for different values of
these two parameters. One can see that analytic asymptotes
As the Mach number increases, the deviatiorfpfrom  agree fairly well with the numerical results—depending on
the Maxwellian distribution becomes stronger. OiMe=1, the value of /¢, the discrepancy is<10% at Mt
the conventional susceptibility of the Maxwellian plasma is<0.2-0.3[Eq. (11)] and M= 10-20[Eq. (12)]. At small
no longer applicable for ions, and E¢B) should be used Mach numbers, as long as the mean free path exceeds the
instead. In order to calculate the ion drag force Kbf>1,  screening length, the collisions do not affect the force, but in
mathematically it is more convenient to employ E§). The  the strongly collisional casé,<\, the force is increased. At
integrals J; »(0,k) are determined by the functiodfo, =7  large M the effect is opposite—the force increases with the
+%a(k)772, with a=k?¢?+ik (M=, +ia,. The coefficient mean free path, although this dependence is rather weak
a(k) is a measure of collisionality: Fde|<1, both longitu-  (logarithmig.
dinal (~M+f) and transversg~¢{) mean free paths are
shorter than the corresponding spatial scéileserms ofk), V. DISCUSSION AND CONCLUSIONS
and the ion response is due to hydrodynamic effects. The first
two terms of the power series a@g =1-a and J,=1
—2ia,—3a. In the opposite limifa|> 1, the mean free path In order to highlight importance of the self-consistent ap-
exceeds the spatial scale at least in one direction, and thgiwoach proposed here to calculate the ion response and the
the kinetic effectqviz., Landau resonangéecome crucial. drag force, let us compare the derived asymptotic expression
The asymptotic expansion yield$, = Vml2a712 and To= for the force at large Mach numbdi&q. (12)] with the scal-
_i\fmazla-ll% Therefore, we can divide the integration re- ing which follows from the Maxwellian dispersion function
gion in Eg.(10) into “collisional” (|¢|<1) and “collision- ~ [18]. The latter can be formally obtained by setting first
less” (|| > 1) subregions and use the corresponding limitingM=0 in Eq.(8) for the ion susceptibility and then calculat-
expressions fot7; ,. The resulting collisional contribution iNg the force from Eq.(10) with e(w,k) at w=-ku
(hydrodynamic effecisturns out to be proportional tM}Z, =-kjytM+. This readily gives usl;:ocM}2 In My for M>1,
whereas the collisionless pditandau resonangescales as in contrast to Eq(12). Thus, the self-consistent approach
«M;* and, hence, is more important at large Mach numbersyields the force which is much larger than the results of
The integration finally yields the force favi;>1 (with the  calculations with the shifted Maxwellian distribution. Note
logarithmic accuracy that the traditional pair collision approach at large Mach

B. Analytic expression forM>1

A. Importance of the self-consistent approach

016405-4



KINETIC APPROACH FOR THE ION DRAG FORCE IN.. PHYSICAL REVIEW E 71, 016405(2009

- " " ' smallM+. This is due to the ion focusind 2]: Each collision
3 “eliminates” the angular momentum the ion haadlith re-
spect to the partic)ebefore the collision. Therefore, the mo-
tion of the flowing ions becomes more “radial” due to the
attraction towards the charged particle—the “focusing cen-
3 ter” downstream moves closer to the particle. This additional
focusing implies a local increase of the ion density and,
hence, increase of the polarizatitforce). This mechanism,
however, can operate only if the field of the charged particle
3 is stronger than the global field,. Otherwise, ifE;, is rela-
tively strong(Mach number is large it should defocusthe
ion trajectories: After each collision, the ions should acceler-
1 ate mostly alonds,. An increase of collisionalitfdecrease
b of €) at constanMx<Eyf implies an increase of the global
electric field and, hence, stronger defocusing. In turn, the
latter implies the decrease of the polarizatidorce) which
1 we see in Fig. 1.
3 It is noteworthy that the force acting on a motionless test
charge embedded in a collisional flowing plasma is not
equivalent to the force acting on the moving charge in a
0.01} “ . . o plasma at rest. The principal difference between these two
0.01 0.1 1 10 100 cases can be easily understood in terms of the reference
M frames: For the moving test charge, the ions flow with re-
T spect to the charggetherwith neutrals and, hence, keep
the Maxwellian distribution. In this case, the force on the
FIG. 1. Normalized ion drag force versus the thermal Machcharge is determined by the Maxwellian dispersion function.
number of the ion flonM+. The force depends on two parameters: In contrast, when the charge is at rest and the ions flow, the
the ratio of the ion screening length to the thermal Coulomb radiuspeutrals remain at rest as well. Of course, this changes the
N/ Ry, and the ratio of the screening length to the thermal mean fre¢on distribution functiorsee Eq(3)] and, thus, the ion drag
path,\/€. The data points are obtained by numerical integration offorce.
Eq. (10) with the ion susceptibility from Eq(@8), for A/Ry=10 (a)
and \/Ry=100 (b). Symbols represent/€¢=0.1 (1), A/€=1 (O),
and \/€=10 (A). Analytic asymptotes at small and large Mach B. Remarks on the applicability
numbersg Egs.(11) and(12), respectively correspond to the same The applicability of the linear approach presumes large
values ofA /¢ (solid, dashed, and dotted lines, respectively arguments of the logarithms in Eqdl) and (12—the so-
5 called “logarithmic accuracy['12,21]. For M{<1 this is the
numbers also gives the scalifig< M7 In M+ [8,25,26. well-known condition for the Coulomb logarithm,/Ry>1
The reason why the power factor of the force scales a§9,10,21. It is very interesting that larger Mach numbers
oc|\/|;1 at large Mach numbers can be understood from Egimply better applicabilityof the linear theory—the argument
(3): As we already discussed in the end of Sec. Ill, the un-of the logarithm in Eq(12) grows withM+. Physically this is
perturbed distributionf, is essentially asuperposition because the range of nonlinear interaction scale®ealsl 7,
of shifted Maxwellian functions with the weights so that the upper limik,, in Eq. (10) increase$27,28.
utexp(-v,/u)dv,. Therefore, also the total force is a super-  The criteria of the applicability can be obtained as fol-
position of the forces calculated for the shifted Mawellianlows: Calculating the force we neglected the contribution of
distributions with the corresponding weights. Mt;>1, the  ions from the “nonlinear region” within the Coulomb radius,
contribution of ions with the longitudinal velocity, to the =R This contribution can be easily estimated in terms of
force scales agvﬁz [8,9] (neglecting the logarithmic factpr ~ the trajectories: Impact parameters of ions contributing to the
Hence, the superpositiawiz., integration yields the power polarization in this region do not exce®&l For My <1 this
dependence xutf7 v;? exp(-v,/u)dv = M7 +O(M7?) for  Yields logarithmically small correction, providex/Rr>1
the total force, in ;greement with EqL2). The obtained [12]- At Mr>1 the “nonlinear” mgmzentum transfer does not
scaling does not depend on a functional form of the weight§*ceed the momentum fluxmnyw;R". The Coulomb radius
which, in turn, are determined by a particular dependence cfcales alk=Rr(vs/v))* and, hence, the rgsmzjltmg correction
the collision frequency on the ion velociyn our case,y ~ t0 the force is less than~(mnutRy/u)f, vy dy
=cons). Therefore, we can presume that this scaling is a~(€Z/\)>M7*. Thus, the contribution of nonlinear effects at
generic feature of the self-consistent approach at large Maclarge Mach numbers is logarithmically small as wgdee
numbers. Eq. (12)].
Another feature of the obtained results is the dependence The calculations were performed for a pointlike particle.
of the force on the ion mean free path. Figure 1 shows thaln reality, however, the particle has a finite si@gadiug a
frequent ion-neutral collisionsf <\) enhance the force at and, therefore, a certain fraction of ions is absorbed on it: In

Normalized force

e
[

016405-5



IVLEV et al. PHYSICAL REVIEW E 71, 016405(2005

terms of the trajectories, the ions having an impact parametesionlesscases when both the ion Coulomb radius and the
smaller than the so-called “absorption radiysgys transfer  mean free path exceed the spatial scale of the proléem,
their momentum in direct collisions with the partic]8].  \) [9,10]. This situation is typical for subthermal ion flows,
Thus, the obtained results are valid as long as the contribuvhen R=R; is large compared to the screening length.
tion of the absorbed ions to the force is small. The conditionsmall Mach numbers also imply weak distortion of the po-
to neglect the absorbtion is thag,s should be much smaller  tential around the charged particle and weak deviation of the
thanR [12]. In the “collisionless” caséwhen the ion mean jon, gistribution from the shifted Maxwellian function. There-
free path exceeds the spatial scale of the problem, ®g., fore, there is no need to employ the self-consistent kinetic
the absorption radius is determined by the “orbit-motion-5nnrqach in this case. On the other hand, for suprathermal
limited” (OML) theory, paps=ay1+R/a[8,29,30. For small g (when M;=1 and the linear theory can be better ap-
Mach numbers, thdtherma) Coulomb radius is usually lied) both the particle potential and ion distribution function

much larger than the particle size and, hence, the absorptle}e highly anisotropic, and then the self-consistent kinetic

does not affect the results. As the Mach number grows, the . S
) o L approach is necessary. And, of course, the kinetic approach
role of the ion absorption increases. This is because the CO%_houId be used in stronalv collisional cases
lomb radius rapidly falls off to zero, whereas the absorption In thi gy the alobal fid 't beh
radius tends to the geometrical limit,,s=a. Comparing the N IS paper we assume the global li g_o €homo-
resulting direct momentum flux on the particlemn,u?a?, geneouswhich corresponds to the ion flow in the mobility

with Eq. (12) we obtain the conditioMy= (Ry/a)?"? for the limit [see Eqgs(2) and(3)]. This limit requires the_ion mean
absorption to be neglected. TypicallR;/a~100—-300 in free path¢ 10 be.sn."naller than_ th‘? scalg: Qf spatial vania-
complex plasma$9], so that the absorption does not play tions OT Eo. In p_r|n0|ple, the kinetic equation can be s_ol\_/ed
noticeable role up taMl=<30-50. Note also that wheR for arbltra_ry ratio betweerig and €: The consm_iered .I|m|t
becomes smaller thaa, but the absorption still does not Le> ¢, being very useful for practical applications, is also

affect the force—i.e., alRr/a)2=< M+ = (Ry/a)2*—the par- relatively simple for calculations. It is important, however, to

ticle size rather than the Coulomb radius determines the upsitUdy the opposite c_oII|5|o_nIess limite <, wh_er_1 lons
er limit of integration in Eq.10): i.e., k..~aL In the move over ballistic trajectories between rare collisions. This

P L » 9 g.(1U)- 1.€., Kmax ) case will be considered elsewhg&s).

collisional” case (when the ion mean free path becomes . . . L

comparable with\) the absorption changesys, increases Another issue is the_ depe_ndence of the |0n.coII|S|on fre-

with v [31-33. Nevertheless, for large Mach numbers this duency » on the velocity. This dependence might play an

does not affect the linear theory, since the ion motion islmportant role at small Mach numbers, when the ion energy

basically collisionlesgsee Sec. IV, For My<1. the ion ab Is relatively small and, hence, the mean free path rather than
. . T y =

sorption does not change the results of the linear theory ige collision frequency should be considered constant

N .T14,19. In this case, the collision operator in the kinetic
\évr?a”rg[;g]éégf E(;Llirs:’ itrrl]eplziigtslsrr;tflf(;r;tgsterllfec?gbr;gé_ehsetri]s n?ra' equation has the integral form, which makes the algebra far

L . I ... more complicated and requires extensive numerical simula-
neutral collisions also cause the ion trapping in the vicinity P q

. . .y tions.
of the grain[32,33, which can strongly change the potential ) .
distribution around the particle and thus influence the ion _And flnglly,.m complex plasmas one ofte_n has to d_eal
drag. This, however, is an essentially nonlinear process an ith the situation when the linear treatment is not possible

cannot be considered in the framework of the linear theory..or.the lon drag force. As we mentioned above, this problem
is important for small Mach number®.g., bulk plasmas

when the linear approach can be applied only for sufficiently

small (submicron particles[12]. In this case, although the
The linear kinetic approach and the pair collision ap-proposed form of the model collision integral remains valid,

proach are complementary to some extent: The pair collisiothe self-consistent approach requires solution of the nonlin-

C. Conclusions and unresolved issues

approach is more suitable to descritighly nonlinear colli-  ear Poisson equation coupled to the kinetic equation for ions.
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